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1. Machine Learning / Artificial Intelligence

• top-down business-view

• bottom-up technical view

2. Approximating Life Insurance Liabilities
● Solvency 2 (Europe), AG43 & C3P2 (US)
● ALM for life insurance landscape: Moody’s, WTW, Milliman, Deloitte
● academic landscape
● perceived trends
● ideas and theses

Outline
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Machine Learning (Business View) 
Still small, but growing fast*:

● $26bn – $39bn invested in 2016
● 1-3% of total tech investment
● annual growth rate of capital invested by Venture Capital firms is about 

35 – 40% in the period 2010-2016

Spending is dominated by the “tech giants” (like Google, Amazon, Apple, 
Baidu, Facebook, IBM, Microsoft, Netflix, ...):

● $20bn – $30bn invested in 2016 by the 35 most important firms

Adoption of Artificial Intelligence (AI) in three tiers:

(1) tech & telecoms, automotive, financial services

(2) retail, media & entertainment

(3) education, health care, travel

Many companies are still monitoring and experimenting.

*McKinsey Global Institute: “Artificial intelligence – The next digital frontier”, June 6, 2017, and 
“Smartening up with artificial intelligence – What’s in it for Germany and its industrial sector”, April 19, 2017
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Narrow AI/ML Application Breakthroughs

Breakthroughs:

● image recognition, 
computer vision

● natural language 
processing

● knowledge 
representation and 
fast retrieval

Improvements:

● remarkable 
improvements in 
deriving predictions 
from large data bases

Highly Visible Applications

● autonomous vehicles (cars, copters, 
drones)

● Siri, Cortana, Google Now!
● IBM Watson
● AlphaGo (2016), Libratus (no-limit 

Texas Hold’em, 2017)

Less widely publicized:

● classification in insurance: automated 
underwriting, claims management, 
fraud detection

● classification in health care: X-ray and 
MRI images, gene expression data, ...
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Machine Learning (Bottom Up)

“System II” (Kahneman):

● analytical, using words and 
language

● can reason with logic

● in humans, not animals:

● causation = understand a 
statistical result, build theories

“System I”:

● fast, creative, associative, 
passionate

● can reason with intuition

● done well by humans and animals:

● correlation = uncover a statistical 
result, recognize patterns

Cognitive Computing:

● knowledge graphs, ontologies

● automatic reasoners

● shallow reasoning can be 
parallelized efficiently

Statistical Learning:

● deep neural nets, SVMs, random 
forests, … nonlinear methods

● massively parallel computations: 
GPUs, FPGAs, TPUs, “neuro”-chips
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Cognitive Computing: Concepts & Keywords

Beneath the tip of the iceberg:

● artificial intelligence & machine learning: Apple's Siri, IBM's Watson, 
Google's semantic search, … 

is the less visible “cognitive computing”:

knowledge graphs,
RDF

ontologies,
OWL automatic reasoners

rich 
semantic search

semantic data lakes
NoETL

advanced analytics
in Python/R/Java +CUDA

speech recognition

NLPNoSQL
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What is an Ontology?

How do different tribes use “ontology”?

Three shades of meaning (partly overlapping): 

1. Provide “meaning” in the knowledge graph. This is the basis for “rich 
semantic search” and this is what Google's knowledge graph supports: E.g. 
Google knows two meanings of “Rosetta Stone”: the artifact and the 
software.

http://google.com/?q=Rosetta+Stone

2. Agree on a common vocabulary and consistent rules for applying this 
vocabulary. Examples in medicine: “ICD-10” or “SNOMED” or the financial 
industry: “FIBO”. The agreed upon common vocabulary acts as the 
“Rosetta Stone” to connect different sources of knowledge.  

3. Define rules to enable automatic reasoning. Use languages that are 
expressive enough to be interesting but limited enough to allow practicable 
“theorem provers” (= automatic reasoners).

http://google.com/?q=Rosetta+Stone
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Specific Knowledge Graphs (2015-2017)
facts entities remark

Google KG 70bn 
(2016)

1bn 
(2015)

uses “component value types” to encode n-ary 
relations for n>2

Metaweb 
Freebase

1.9bn 
(2015)

48m
(2015)

acquired by Google 2010; phased out Jun 2015 (and 
small portion transferred to Wikidata)

Wikimedia 
Foundation
Wikidata

600m 
triples
(2015)

14m
(2015)

entities can act as classes; predicates can have further 
“qualifiers”; facts are independent of the language 
(covers 400 languages); hosted by Blazegraph

FU Berlin +
Univ. Leipzig
DBPedia

580m 
(engl.)

4.6m “knowledge” extracted from Wikipedia; unlike Wikidata, 
additional triples for different languages might be 
inconsistent; hosted by Virtuoso

mpii
Yago3

120m 10m “knowledge” extracted from Wikipedia, wordnet and 
GeoNames; hosted by Virtuoso 

MusicBrainz ? 21m facts about 17.7m recordings, 1.9m releases and 1.2m 
artists; originally hosted in PostgreSQL 

Cyc 15m 700k Cyc started 1984 as an attempt to build an ontology of 
everyday common sense knowledge 

Wolfram 
Alpha

? ? question-answering machine, very likely employing 
some form of knowledge graph
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Cognitive Computing Business Models

firms: products main story lines

Apple: Siri, 
Microsoft: Cortana, 
Google Now!

digital personal assistants with a natural 
language interface; often related to search

IPSoft: Amelia, 
inbenta: Veronica, 
ExpectLabs (now Cisco): 
MindMeld

help-desk and phone center support, 
customer service apps;
adding voice support to mobile apps

IBM: Watson, 
Palantir: Gotham, 
Saffron (now Intel): Saffron 
cognitive solutions (associative 
memory)

flag patterns in large knowledge bases: 
policing & anti-terror intelligence, fraud 
detection, customer relationship mgmt. 
(CRM), software life-cycle support, ...
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Selected Business Models*
 

firms:  products main story lines

DataStax: Cassandra transactional databases with master-master 
replication => full Partition tolerance and high 
Availability; fully “ACID” with eventual and 
tunable Consistency

declara, InsightNG personalized learning and knowledge discovery

CoherentKnowledge: ERGO 
(Rulelog)

“understanding” and reasoning over legal 
language, e.g. financial regulatory texts and 
transactions

Capsicum (now Capsifi): 
Jalapeno

business architecture consulting: FIBO, ISO20022 

Capsenta: Ultrawrap “NoETL” federation of different data sources

* SmartData Week, San Jose, August 2015
  SmartData Conference, Redwood City, January 2017
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Approximation of Life Insurance Portfolios 
Use cases:

● SCR in internal models in Solvency II 
● reserving (AG43) and capital requirements (C-3 Phase2) for US variable 

annuities
● liability driven investment, ALM
● hedging platform: hundreds of greeks for dozens of portfolios
● pricing of reinsurance contracts (base price + risk margin)

Usual classification:

outer 
scen.

inner 
scen.

function base, feature 
selection

curve 
fitting

few 
(~200)

many 
(~5k)

simple, analytic functions 
(e.g. quadratic)

trading & hedging 
operations, pricing

replicating 
portfolio

more 
(5k..50k)

 4..50 “meaningful” analytic 
functions, “features” pre-
selected by humans

typical software: 
Algorithmics or in-
house

LSMC many 
(10k..2m)

few 
(1..4)

some function base,   
machine-selected “features”

Milliman, Moody’s, 
WTW, Deloitte, ...

“pricing surface” story
practice: 

hybrid
of all 3!



slide 12

Approximate PV-Surfaces with LSMC 
[1] S. Morrison: “Nested Simulation for Economic Capital”, Barrie+Hibbert Insights, Dec 2009. 

[2] A. Koursaris: “The Advantages of LSMC”, B+H Insights, Jul 2011; “A LSMC Approach to Liability 
Proxy Modelling and Capital Calculation”, B+H Insights, Sep 2011.

[3] M.Hörig, M.Leitschkis: “Solvency II Proxy Modelling via LSMC”, Milliman, Jan 2012.

[4] T.Kalberer: “Stochastic determination of the VaR for a portfolio of assets and liabilities I”, Der 
Aktuar Q1 2012; “… – Estimation Error, II”, Der Aktuar Q2 2012; “… III”, Der Aktuar Q3 2012.

[5] M.Leitschkis, M.Hörig, F.Ketterer, C.Bettels: “LSMC for fast and robust capital projections”, 
Milliman Feb 2013.

[6] S.Morrison, L.Tadrowski, C.Turnbull: “1-year projection of run-off CTE reserves”, Moody’s Mar 
2013.

[7] S.Morrison, C.Turnbull, N.Vysniauskas: “Multi-year projections of market-consistent liability 
valuations”, Moody’s Apr 2013.

[8] G. Conn: “Proxy Function Fitting: Some Implementation Topics”, Moody’s, Oct 2013.

[9] M.Hörig, K.Murray, E.Phelan, Leitschkis: “An application of Monte Carlo proxy techniques to 
variable annuity business: A case study”, Milliman Nov 2013.

[10] S.Morrison, L.Tadrowski: “Efficient Statistical Estimation of 1-year VaR Economic Capital”, 
Moody’s Nov 2013.

[11] A.Clayton, S.Morrison, C.Turnbull, N.Vysniauskas: “Proxy functions for the projection of Variable 
Annuity Greeks”, Moody’s Nov 2013.

[12] D.McLean, D.Redfern, K.Pyper: “A Survey of Regression Methods for Proxy Functions”, Moody’s 
Mar 2014. (The paper touches on GAM, neural networks, regression trees, kernel smoothing, 
lowess and finite elements as potential alternative to polynomials.)

[13] M.Elliot: “Making Proxy Functions Work in Practice”, Moody’s Feb 2016.   
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Main lessons:   

Cashflow approximation with “replicating portfolios” may be sub-optimal for a 
number of reasons.

LSMC approximations of PV-surfaces are very versatile. They can be applied not 
only to 1-year VaR (Solv2), but also to 
● CTE-based reserving (AG43) and capital calculation (C3P2),
● multi-year projections, 
● the computation of coverage ratios, hedge ratios and other risk parameters.

LSMC can be fully automated (including “feature selection”) and it may be 
improved by

i. using very few inner scenarios per outer scenario,

ii. potentially increasing numbers of inner scenarios (dynamically) for some 
outer scenarios,

iii. using uniformly distributed (instead of real-world) outer scenarios,

iv. correcting the bias in the VaR estimate induced by the additional variance 
caused by the inner scenarios,

v. using orthogonal function bases (or bases with low condition number),

vi. using different (independent) inner scenarios for different model points.  

Approximate PV-Surfaces with LSMC 
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[1] M.Gordy, S.Juneja: ”Nested Simulation in Portfolio Risk Measurement”, FED Discussion Paper 2008-
21, Apr 2008:

● use independent inner scenarios and let the number of outer scenarios grow 
proportionally with N² (N = the number of inner scenarios)

● use re-sampling to estimate bias and variance and correct for the bias; potentially use 
it to allocate the number of inner scenarios dynamically

[2] M.Broadie, Y.Du, C.Moallemi: “Efficient Risk Estimation via Nested Sequential Simulation”, Columbia 
University Working Paper, 2010-12-13:

● sequential allocation of computational effort in inner scenarios
● => asymptotic error rate goes from k-2/3 to k-4/5+ε 

[3] E.Beutner, A.Pelsser, J.Schweizer: “Fast Convergence of Regress-Later Estimates in LSMC”, 
Maastricht University, 2013-09-20:

● “regress-now” is fundamentally different from “regress later”
● “regress-now” = regress a later value function or discounted cash flow onto a set of 

basis functions at an earlier time, e.g. t=1
● “regress-later” = fitting cash flows with explicitly known conditional expectation, for 

example using a replicating portfolio of assets that can be priced analytically
● “regress-later” can converge faster than 1/N
● the “regress-now” error depends on the projection error ||X – Et[X]||2 , where X is the 

claim and Et[X] is its conditional expectation, whereas the projection error is zero in 
“regress-later”

Academic Insights
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Academic Insights
[4] J.Natolski, R.Werner: “Mathematical analysis of different approaches for replicating portfolios”, 
Working Paper 2014-04-16, appeared to EAJ.:

● compares the approximation of “terminal values” (like in Oechslin et.al. 2007) with 
the approximation of “present values”

● => If dynamic trading in the numeraire is included in the replicating portfolio, then 
matching terminal values is almost the same as matching present values, subject 
to a measure change. 

[5] A.Pelsser, J.Schweizer: “The Difference between LSMC and Replicating Portfolio in Insurance 
Liability Modeling”, Maastricht University, 2015-01-29:

● didactic introduction to the difference of “regress-now” versus “regress-later”
● main message as before: “regress-later” is potentially more powerful
● But: “LSMC” approaches are used slightly differently in practice (e.g. on uniform 

scenarios instead of on real-world scenarios) and
● “RP” approaches may not always involve analytic pricing of conditional 

expectations

[6] J.Natolski, R.Werner: “Replicating portfolios – interplay between objective function and 
numeraire”, Universität Augsburg, 2015-08-15:

● extreme values in interest rates may dominate the solution => re-scale cash-flows 
properly by working with numeraire-discounted values

● discussion on using L1 versus L2 -penalties in the regression
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Academic Insights
[7] E.Beutner, A.Pelsser, J.Schweizer: “Theory and Validation of Replicating Portfolios in Insurance 
Risk Management”, Maastricht University, 2016-03-20:

● summary of previous insights
● specific examples, including a path-dependent one => avoid tensor-product-style 

bases for path-dependent options

[8] J.Natolski, R.Werner: “Mathematical foundation of the replicating portfolio approach”, Maastricht 
University, 2016-04-26:

● exact error bounds for MCEV and economic capital
● using different measures for [0,1] and [1,∞]

[9] M.Cambou, D.Filipovic: “Replicating Portfolio Approach to Capital Calculation”, EPFL Lausanne, 
2016-05-10:

● a dynamic-hedging RP approach related to the chaos expansion of martingales on 
Wiener space

Open Question: 

How to achieve the apparent advantages of “regress-later” in the 
real-world, especially in the presence of non-trivial path-dependency and if 
the re-calibration of the risk-neutral ESG is not directly accessible. 
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From nonparametric statistics to ML
step nonparametric statistics 

1997
“ML-style” statistical learning 

2017

clean data partly automated ETL into 
human-generated schemata

mostly automated, flagging “rare 
issues” for humans to look at

select meta-
approach

expert human choice attempts at automation, but still 
mostly human choice

select “features” expert human choice fully automated

fit model automated fully automated

cross-validate & 
refit

mostly automated fully automated

validate model 
(narrow sense)

human analysis => feedback 
loop to feature selection

fully automated

compare meta-
approaches

expert knowledge (fairly static, 
mostly asymptotic results) 
=> feedback loop to meta-
approach selection

meta-model analysis by humans 

=> feedback loop to meta-
approach selection

compare: 
P ?= NP
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Trends & Theses

(2) We will see other ML-inspired approaches to the approximation 
of life insurance liabilities than (orthogonal) polynomials.

(3) GPU-enabled computing allows to perform computations on €10k-
machines today, for which insurers have been using 100+-CPU clusters.

Once insurers switch to using GPUs, we will see different methods, 
software architectures and deployment processes. 

(1) More and more steps in the statistical learning loop become 
automated. The trend towards LSMC (away from curve fitting and RP) will 
continue in the sense that “feature selection” and “model choice” are more 
and more automated and function bases and model parameters do not 
need to have any “meaning” for humans.
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New Challenges for Humans

How to trust the new 
“machine-learned” 
solutions?

What to trust them for?

What are their 
limitations and 
weaknesses?

How to find 
weaknesses in 
“machine-learned” 
solutions?

More fully automated, “black-box”-fitting of ever more complex models 
requires even more thoughtful risk management and validation.
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Validation Ideas
• Use the “ML-spirit” and technology (GPUs) to find weaknesses 

in machine-learned solutions.

• Check against model criteria that are meaningful for humans.

• Compute bounds for key criteria and use machine-learning 
technology to be able to do this.

Example: 
Deficiency in Sobol 
numbers used as 
calibration 
scenarios:

x11 * x16

x1 * x18
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